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A Frequency-Dependent Finite-Difference Time-

Domain Formulation for General Dispersive Media
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Abstract— A weakness of the finite-difference time-domain

(FDTD) method is that dispersion of the dielectric properties of
the scattering/absorbing body is often ignored and frequency-
independent properties are generally taken. While this is not

a disadvantage for CW or narrow-band irradiation, the results
thus obtained may be highly erroneous for short pulses where
ultrawide bandwidths are involved. In some recent publications,

procedures based on a convolution integral describing D(t)
in terms of E(t) are given for media for which the complex
permittivity c“ (ti) may be described by a single-order Debye
relaxation equation or a modified version thereof. Procedures are,

however, needed for general dispersive media for which e’ (LLI)
and P*(w) may be expressible in terms of rational functions, or

for human tissues where multiterm Debye relaxation equations

must generally be used. We describe a new differential equation

approach, which can be used for general dispersive media. In

this method D(t) is expressed in terms of E(t) by means of a

differential equation involving D, E, and their time derivatives.
The method is illustrated by means of one- and three-dimensional
examples of media for which e“ (w ) is given by a multiterm Debye
equation, and for an approximate two-thirds muscle-equivalent
model of the human body.

I. INTRODUCTION

T HE FINITE-DIFFERENCE TIME-DOMAIN (FDTD)

method is being increasingly used for numerical

calculations of electromagnetic scattering and absorption.

Our interest in the FDTD method has been to apply it to

bioelectromagnetic problems, both from the point of view of

safety and for medical applications such as hyperthermia. For

these applications, the FDTD method has been found to be

extremely versatile [ 1]–[7] and has been used to calculate

mass-normalized rates of absorption of electromagnetic energy

(specific absorption rates or SARS in W/kg) for spatially

uniform or nonuniform incident fields (far-field or near-field)

that may be sinusoidally varying (CW) or transient, such as

those for an electromagnetic pulse (EMP).

A weakness of the FDTD algorithm is that the dispersion

of the dielectric properties of the scattering/absorbing body

is mostly ignored and frequency-independent properties ae

generally taken. While this is not a disadvantage for CW or

narrow-band illumination, the results thus obtained may be

highly erroneous for short pulses where wide bandwidths are
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likely to be involved. In our previous work with irradiation of

the human body to vertically polarized EMP [6], we had also

neglected the known dispersive properties of the biological

tissues and had assumed dielectric constants and conductivities

for the various tissues at a midband frequency of 40 MHz.

Since the induced currents for the various parts of the body

were found to have spectral characteristics from sub-MHz

frequencies to about 80 MHz for the assumed EMPs with

time durations on the order of a few hundred nanoseconds, a

question obviously arises about the accuracy of the calculated

current waveforms. This is particularly troubling due to the

fact that even though the conductivity does not vary a great

deal, the dielectric constants of the various high-water-content

tissues vary by orders of magnitude over the spectral domain

of the induced currents [8]. Yet this variation was neglected

in this first set of calculations [6].

In some recent publications, procedures are described for

one- and two-dimensional problems for media for which the

complex permittivity c“ (w) may be described by a single-

order Debye relaxation equation [9], [10] or a modified version

thereof [11 ]. During the revision phase of this manuscript, a

recent paper by Sullivan has appeared in the literature, which

describes the application of this approach to three-dimensional

bodies [12]. As presently developed by these authors, the

electrical displacement vector D(t) in the time-domain is

written in the form of a convolution integral involving ~(t–~)

and e(T) integrated from O to t. Evaluation of a convolution

integral will, in general, require storing a large number of past-

time values of E for each of the cells, with the resulting need

for intolerably large computer memory. Por materials that can

be described by a single-order Debye relaxation equation (such

as water, human tissues for narrow frequency regions, etc.) or

a modified version thereof (such as gaseous plasma), C(T) in

the time-domain can be written in terms of an exponential

function. This allows us to write the convolution integral in

terms of a summation of exponential functions, which can be

updated recursively and only one additional number will need

to be stored for each electric-field component for each of the

cells. Our interest is to develop the (FD)2TD method for the

general dispersive media for which c“ (w) may be expressible

in terms of rational functions since even for human tissues,

a single-order Debye relaxation equation is often not enough

and multiterm Debye relaxation equations must therefore be

used to describe the dispersion characteristics [ 13].

In this paper we describe a differential equation approach

which should be easy to implement for general dispersive me-

dia for which permittivity and/or permeability can be described
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in the frequency domain by means of rational functions. We

illustrate the use of this approach by one-dimensional and

three-dimensional examples of media for which the complex

permittivities are given by a multiterm Debye equation and

for an approximate two-thirds muscle-equivalent model of the

human body.

II. THE DIFFERENTIAL-EQUATION-BASED (FD)2TD METHOD

The time-dependent Maxwell’s curl equations used for the

FDTD method are:

~xH_8D

ix

(1)

(2)

where the displacement vector D is related to the electric field

E through the complex permittivity C*(w) of the local tissue

by the following equation:

D = c*(LJ)E (3)

It should be noted that in writing the Maxwell’s equations in

the above form, both the conduction and displacement currents

are combined in 8D/i?t or in defining the complex permittivity

c“ (u). In fact, for high-water-content biological tissues, the

conduction current is the larger of the two for frequencies of

tens of MHz or lower, which is reflected in the imaginary part

of e“ being larger than its real part [14]. Since (1) and (2)

are to be solved iteratively in the time-domain, it would be

desirable to also express (3) in the time-domain.

We have developed a differential equation approach which

should be easy to implement for general dispersive media for

which permittivity andlor permeability can be described in the

frequency-domain by means of rational functions. Because of

our interest in bioelectromagnetic problems, we illustrate this

procedure by taking an example where c“ (u) can be described

by a two-relaxation Debye equation:

[

&~l — & E&? — em
&*(w) = &o em +

1 + jwrl
+

1 + jwrz 1 (4)

From (3) we can write D(w)

D(w) = E*(W)~(W)

where zero (static) frequency dielectric constant e. is given by

Since (5) is a frequency-domain description of D obtained

for a single-frequency sinusoidal variation of fields, we can

write it for an arbitrary time variation in terms of the following

differential equation:

i!12D
TlT2=+(T1+T2)g+D

[

19E
= Co e9E(t) + [q1T2 + e~2T1]m

t12E
+~cxJ-lr2~ 1 (7)

As can be recognized, (7) is a modified version of the

polarization equation in the relaxation theory of dielectrics.

For the (FD)2TD method, we need to solve (1) and (2) subject

to (7). Similar to references 1, 2, 5, and 15, these equations

can be written in the difference form (illustrated for the z-

components only for each of the (1), (2), and (7)) shown at

the bottom of the page where H = GH

Jl:+llz(z + l/2, j + 1/2, k) = ii;-1/2(2 + lp>j + 1/2), k) + :
[

E:(Z + l/2, j + l,k) – Eg(z + l/2, j,k)

+E;(i,’j + l/2, k) –E;(2+ l,j+ l/2, k) 1
(8)

([ - ~+’/’(z - l/2,j, k + 1/2)@+l@(i + l/2, j, k + 1/2) – Hg 1D“+l(i,j,k+1/2) = D;(i, j,k + 1/2) + ;; “z +fi;+l/2
(i$j - l/2, k + 1/2) - Z+l/2(i,.j + l/2, k + 1/2)

(9)

~+1 _ jj?:) + _“+1 + E;) + &z~o(Ez &2(J%+’- ‘2E; + E~-’)

= P.(D:+l + q) + #(D;+l – q) + ~(D;+l - 2DZ + D~-’)
(tit)z

(lo)
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In (8)–(10), the subscript n denotes the time n& in terms

of the incremental time or time step &. The time step & is

determined by the cell size 6 (assumed equal in x, y, and

z directions. To satisfy the stability condition, the following

condition is generally taken: 6t = 6/2c~.X where c~.x is the

maximum velocity of the electromagnetic waves encountered

anywhere in the interaction space. For the present calculations,

we have taken Cmax = c corresponding to velocity of EM

waves in air.

Upon rearranging terms, we can rewrite (10) as follows

[

al 1z E:+la“+x+(tit)z

As in the conventional (frequency-independent) FDTD

method, the fields E and H are calculated in a time-stepping

manner for a lattice of cubic cells similar to the method

originally proposed by Yee [16]. In our formulation we use

the values of E to calculate ~ from (8) and similar x- and

y-component equations of (1) in the difference form; use H

to calculate D from (9) and other component equations of (2);

and use D to calculate 13 from (11) for the following time

step, after which the process is repeated for the next time step

and so on.

In a heterogeneous model, aO, al, ci2, ~1, and /32 will be

different for different cells depending on the tissues in that

individual cell. The corresponding coefficients of (11) would,

therefore, need to be stored for such models. Such heteroge-

neous models have not, however, been considered to date. We

are examining the possibility of fitting the frequency variations

of the measured compIex permittivities (c”) for various tissues

to the same relaxation time constants, 7-1and T2 for all of the

tissues so that the C* of the various tissue compositions that

typically exist for the various cells may be combined. With

this approach, only three quantities, viz, aO, al, and a2 will

need to be stored for the individual cells.

III. ONBDIMENSIONAL TEST CASES

1. Air-Water Interface

For water, the complex permittivity e“ (w) can be described

by a single-order Debye relaxation equation

[

c~ — em
C* (w) = co em +

1 + jwro 1 (12)

where COis the permittivity of free space (= 8.85 x 10– 12

F/m), es and em are the dielectric constants at zero (static) and

20 , r , t 1 , 1 , I 1 3 I I , , I I , I , , I , r , I I I

10

0

–lo –

-20 –

g
-30 –

-40 –
~

.2 –50 –
...!
El -60 –

s -70 –

-80 –

-90 –

-1oo –

–110 -

-120 , , , !
o 25 50 75 100 125 150

Frequency (GHZ)

Fig. 1. Frequency spectrum of the truncated Gaussian pulse used for

the 1-D air-water interface problem. E(t) = 1000e–(t ‘+0)2 /T2, where
to = -1006t, T = 152&.
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Fig. 2. Comparison of the reflection coefficient for normal incidence at an

air-water interface computed using the (FD)2 TD algorithm for broadband
pulse irradiation and from the analytical equation (13).

“infinite” frequencies, and TO is the “relaxation-time” constant.

We can adapt the formulation of (7) to this case by putting

esl = c., .5w = Em, 71 = TO and T2 = O, in which case, (7)

becomes a first-order differential equation.

Similar to [9], we have assumed t. = 81, cm = 1.8, and

TO = 9.4 x 10– 12 [17]. We also divided the one-dimensional

problem space into 1000 cells, 499 of which were used to

model air and 501 to model water. As in [9], we also took a

cell size 6 of 37.5 ~m and the time step tit = d/2c = 0.0625

ps, where c is the velocity of EM waves in air.

The assumed incident pulse was of the form E(t) =
loooe-(t–to)’mz” where to = 4006t and T = 1526t. The

frequency spectrum for this Gaussian pulse is shown in Fig.

1, where the lobing structure is due to the truncation of the

pulse.

We have used the differential-equation-based (FD)2TD

method to calculate the reflection coefficient as function of

frequency for the air-water interface. Shown in Fig. 2 is a

comparison of the reflection coefficient at various frequencies

obtained from the (FD)2TD method and the exact values

calculated using the following analytical equation:
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(13)

An excellent agreement is found between the numerical results

using the (FD) 2TD procedure and the analytical values for the

reflection coefficient at various frequencies.

2. Air-Muscle Interface

To test the applicability of the differential-equation-based

(FD)2TD method for dispersive media of more complex fre-

quency variability, we applied it to another one-dimensional

problem for the air-2/3 muscle interface. Since the average per-

mittivity of the human body is close to that for 2/3 muscle, we

decided to take this permittivity instead of that for the muscle.

A five-relaxation Debye equation given in the following

has previously been used to fit to the experimental data for

the muscle [13]

[

8 X 105
E* = .60 4.3+ ~ + ~f,69

81900 11900

+ 1 +jf/(43 x 103)+ 1 + j~/(0.67 X 106)

32 45.8

‘1 +jj/(230 X 106) + 1 + jj/(20 x 109) 1
(14)

where ~ is the frequency in Hz. Since a five-relaxation Debye

equation such as (14) would result in a fifth-order differential

equation for D(t) in terms of E(t) and its derivatives, which

would require a larger storage of the various quantities for

each of the cells, we have attempted to fit a two-relaxation

Debye equation similar to (4) to the experimental data for the

muscle. We have been able to obtain a relatively decent fit to

the experimental data for the frequency band 20 MHz to 20

GHz by using the following equation:

[

10000
C*(W) =&o 19 +

.1 + jf(o.71 x 10-6)

42

+ 1 + ,7j(o.75 x 10-10) 1 (15)

Shown in Figs. 3(a) and (b) as solid curves are the variations

given by (15) for both the relative permittivity G (real part

of c“ /eO) and the conductivity o(= w) imaginary part of

6*). Also shown for comparison are the average values of

the experimental data summarized in reference 13 and the

variations given by the five-relaxation Debye (14). For the

frequency band 20 MHz to 20 GHz, the variations given by

(15) are in reasonable agreement with the experimental data
for the muscle. A major advantage of using the simpler (15)

is that it is possible to use a second-order differential equation

for time-domain representation of D(t) rather than a fifth-
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Fig. 3. Frequency variation of the electrical properties of muscle. (a) relative

permittivity G-. (b) conductwity a.

order differential equation that would be needed had we used

the full-blown (14) from [13].

Similar to the previous test case of air-water interface, we

divided the problem space into 1000 cells of which 499 were

in air and the remaining 501 were in the 213 muscle-equivalent

material. The cell size taken for the calculations was 0.0127
cm (< ~~/10 for $<40 GHz) and 6t = 6/2c = 0.21 ps. The

incident Gaussian pulse had a peak amplitude of 1000 V/m

and was of the form Z3(t) = 1000e–(t–t0)21T2 where LO= 3T

and T = 718t. The frequency spectrum of the assumed pulse

is shown in Fig. 4.

In Fig. 5, we compare the reflection coefficient for the

air-2/3 muscle interface obtained for the various frequencies

using the (FD)2TD method with that obtained using the

analytical (13). Also shown for comparison are the values

that would be obtained for the various frequencies had the

conventional FDTD method been used and properties assumed

corresponding to a midband frequency of, say, 10 GHz.

While the (FD)2TD method using a single run with, say, a
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Fig. 4. Frequency spectrnm of the trnncated Gaussian pulse used for the
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to = 3T, T = 716t.
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Fig. 5. Comparison of the reflection coefficient for normal incidence at
the am-2/3 muscle interface computed using the (FD)2TD algorithm with
broadband pulse irradiation and for the traditional FDTD method where

properties atthemidband frequency of 10 GHz are taken.

Gaussian pulse, gives excellent agreement with the analytical

values at all the frequencies, the conventional FDTD method

gives agreement for the frequency band where the dielectric

properties are close to the values that are assumed for the

calculations. As seen in Fig. 5, for dispersive media such as

the biological tissues, severe errors of calculated results occur

for both lower- and higher-frequency regions.

IV. THREE-DIMENSIONAL TEST CASE: SPHERE

OF 2/3 MUSCLE-EQUIVALENT MATERIAL

We have used the test case of a 2/3 muscle-equivalent sphere

and compared the results of the internal E-field distributions

at various frequencies with the analytical Mie series solutions

that can be obtained at the corresponding frequencies [18].

For the dimensions of the sphere, we have taken a diameter

of 20 cm corresponding to the average dimensions of the

human head. We have divided the three-dimensional sphere

into cells of size 1 cm and have taken a space of 6 cells from

the boundaries of the sphere to the absorbing boundaries on

each of the sides in the x-, y-, and z-directions, respective y.

The time step bt is taken to be 1/60 ns. Because of the larger
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Fig. 6. Frequency spectrum of the truncated Gaussian pulse used for

the 3-D problem using a sphere of 2/3 muscle-equivalent material.

E(t) = loooe–(t–t”)zi~z , where to = 2106t, 7’ = 805t.

cell size of 1 cm (< Ac/10 for j S 350 MHz), a Gaussian

with lower frequency components is taken as the incident

pulse. The assumed Gaussian is of the form 1000e–(t–t0)2jT’

where tO = 2106t and T = 806t. The frequency spectrum

of the Gaussian pulse is given in Fig. 6. In Figs. 7(a), (b),

and (c), we compare the (FD)2TD-calculated variations of ,EZ

along the y-axis at some representative frequencies with those

obtained from the Mie series solutions. The agreements of the

calculated E-field variations using the (FD)2TD method with

the analytical solutions are excellent for frequencies for which

the cell size 6 is less than ~./ 10. Though not shown for lack

of space, similar agreements have also been obtained for other

field components for various locations of the sphere.

V. CALCULATIONS FOR THE HUMAN MODEL

We have used the differential-equation-based (FD)2TD

method of calculate the RF currents induced in the model

of the human body. For these calculations we have used the

anatomically based model of the human body described in our

earlier publications [1 ]–[6], except that uniform 2/3 muscle-

equivalent E* was assumed for each of the cells internal to

the body for this first set of calculations. As in the past,

volume-averaged properties were used for all of the cells

at the model boundary, since these cells are only partially

composed of 2/3 muscle-equivalent material, while the rest

of it is air. If the tissue content of a given boundary cell is

less than 10% by volume, air was assumed to be the material

for such cells. For all of the calculations to date we have

used cubical cells of size 2,62 cm. As in [6], the modeled

space is divided into 38 x 26 x 84 = 82992 cells, of which

5628 cells are either totally or partially within the human

body. A spacing of 7–9 cells from the model is taken to

the absorbing boundaries for the various sides of the modeled

space. For the calculations shown in Fig. 8(a) and (b), we have

assumed isolated (ungrounded) condition of the human model

and a flat-top impulse of radiation of width 5tit in the time-

domain, where 6t = 0.04367 ns is the time step used for the

calculations. The frequency spectrum of this impulse is fairly
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Fig. 7. Comparison of E, calculated by the (FD)2TD method with the

analytic results using Mie series [18]. Diameter of the 2/3 muscle-equivalent
sphere = 20 cm, corresponding to the average dimensions of the human head.
(a)$=40MHz.(b) f=100MHz.(c)t =200MHz.

broad with a nearly constant amplitude for frequencies up to

500 MHz, which is in excess of the region of validity of this

model with cell size of2.62 cm.
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Fig. 8. Induced RF current distributions for a 2/3 muscle-equivalent model

of the human body. Model assumed isolated from ground, Einc = 1 V/m for

each of the frequencies. (a) 40 MHz, 150 MHz. (b) 350 MHz.

We have used the calculated vertically directed internal D.

fields to calculate local z-directed current densities, including

both the conduction and displacement currents, for each of

the cells using the relationship J= =8DZ/6%.Thevertically

directed currents for any of the layers were then obtained by

summing the terms due to the individual cells in a given layer

as follows

(16)

where 62 is the cross-sectional area (2.62x 2.62 cm2) for each

of the cells in the body.

TheinducedRF current distributions precalculated forsome

representative frequencies 40, 150, and 350 MHz, and are

shown as solid curves in Fig, 8(a) and (b), The results for each

of the frequencies are normalized for an incident E field of 1

V/m at the corresponding frequencies. Shown for comparison

are the current distributions obtained for the same model using

the conventional FDTD procedure, For the latter calculations,

a flat-top impulse of irradiation as described above was also

used. exceot that different txo~erties for the model corresrrond-., . . .
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ing to 2/3 muscle-equivalent material (from ( 15)) were used for

the three frequencies. Three individual runs naturally had to be

made for the FDTD method, since different properties for c“

were involved at the three frequencies. As seen in Fig. 8(a) and

(b), excellent agreement is obtained for the (FD)2TD results

with those obtained using the conventional FDTD method,

with the added advantage of being able to use a single run

rather than multiple runs needed for the FDTD method.

VI. CONCLUSIONS

In this paper we have described a differential-equation-based

frequency-dependent finite-difference time-domain ((FD)2TD)

method, which can be used for general dispersive media for

which e“ (w) and ~“ (u) may be expressible in terms of rational

functions. We have illustrated the use of this method by one-

and three-dimensional examples of media for which c“ (w) is

given by a multiterm Debye equation, and for an approximate

two-thirds muscle-equivalent model of the human body. Using

a single run involving a prescribed incident pulse in the time

domain (e.g., a Gaussian pulse or a flat-top impulse), the

(FD)2TD method allows calculations of coupled EM fields,

II, H, and D, and induced currents as a function of time.

By taking the Fourier components of the induced fields, one

can then obtain the corresponding components at the various

frequencies.

For coupling to extremely narrow pulses such as may be

encountered for ultra wideband radar, one can also store the

impulse response of the scatterer and convolve the fields thus

obtained with the prescribed shape of the incident pulse. This

procedure has recently been used [19] to calculate induced

currents in the 1.31-cm cell size model of the human body

(45 024 cells representing the human body) for exposure to

electromagnetic pulse (EMP) and has the advantage of not

requiring repeated large-memory FDTD runs.
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