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A Frequency-Dependent Finite-Difference Time-
Domain Formulation for General Dispersive Media

Om P. Gandhi, Fellow, IEEE, Ben-Qing Gao, and Jin-Yuan Chen

Abstract— A weakness of the finite-difference time-domain
(FDTD) method is that dispersion of the dielectric properties of
the scattering/absorbing body is often ignored and frequency-
independent properties are generally taken. While this is not
a disadvantage for CW or narrow-band irradiation, the results
thus obtained may be highly erroneous for short pulses where
ultrawide bandwidths are involved. In some recent publications,
procedures based on a convolution integral describing D(t)
in terms of E(t) are given for media for which the complex
permittivity ¢*(w) may be described by a single-order Debye
relaxation equation or a modified version thereof. Procedures are,
however, needed for general dispersive media for which ¢"(w)
and p"(w) may be expressible in terms of rational functions, or
for human tissues where multiterm Debye relaxation equations
must generally be used. We describe a new differential equation
approach, which can be used for general dispersive media. In
this method D(¢) is expressed in terms of E(t) by means of a
differential equation involving D, E, and their time derivatives.
The method is illustrated by means of one- and three-dimensional
examples of media for which ¢*(w) is given by a multiterm Debye
equation, and for an approximate two-thirds muscle-equivalent
model of the human body.

I. INTRODUCTION

HE FINITE-DIFFERENCE TIME-DOMAIN (FDTD)

method is being increasingly used for numerical
calculations of electromagnetic scattering and absorption.
Our interest in the FDTD method has been to apply it to
bioelectromagnetic problems, both from the point of view of
safety and for medical applications such as hyperthermia. For
these applications, the FDTD method has been found to be
extremely versatile [1]-[7] and has been used to calculate
mass-normalized rates of absorption of electromagnetic energy
(specific absorption rates or SARs in W/kg) for spatially
uniform or nonuniform incident fields (far-field or near-field)
that may be sinusoidally varying (CW) or transient, such as
those for an electromagnetic pulse (EMP).

A weakness of the FDTD algorithm is that the dispersion
of the dielectric properties of the scattering/absorbing body
is mostly ignored and frequency-independent properties are
generally taken. While this is not a disadvantage for CW or
narrow-band illumination, the results thus obtained may be
highly erroneous for short pulses where wide bandwidths are
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likely to be involved. In our previous work with irradiation of
the human body to vertically polarized EMP [6], we had also
neglected the known dispersive properties of the biological
tissues and had assumed dielectric constants and conductivities
for the various tissues at a midband frequency of 40 MHz.
Since the induced currents for the various parts of the body
were found to have spectral characteristics from sub-MHz
frequencies to about 80 MHz for the assumed EMPs with
time durations on the order of a few hundred nanoseconds, a
question obviously arises about the accuracy of the calculated
current waveforms. This is particularly troubling due to the
fact that even though the conductivity does not vaty a great
deal, the dielectric constants of the various high-water-content
tissues vary by orders of magnitude over the spectral domain
of the induced currents [8]. Yet this variation was neglected
in this first set of calculations [6].

In some recent publications, procedures are described for
one- and two-dimensional problems for media for which the
complex permittivity e*(w) may be described by a single-
order Debye relaxation equation [9], [10] or a modified version
thereof [11]. During the revision phase of this manuscript, a
recent paper by Sullivan has appeared in the literature, which
describes the application of this approach to three-dimensional
bodies [12]. As presently developed by these authors, the
clectrical displacement vector D(¢) in the time-domain is
written in the form of a convolution integral involving E(t—7)
and ¢(7) integrated from O to £. Evaluation of a convolution
integral will, in general, require storing a large number of past-
time values of F for each of the cells, with the resulting need
for intolerably large computer memory. For materials that can
be described by a single-order Debye relaxation equation (such
as water, human tissues for narrow frequency regions, etc.) or
a modified version thereof (such as gaseous plasma), ¢(7) in
the time-domain can be written in terms of an exponential
function. This allows us to write the convolution integral in
terms of a summation of exponential functions, which can be
updated recursively and only one additional number will need
to be stored for each electric-field component for each of the
cells. QOur interest is to develop the (FDY*TD method for the
general dispersive media for which ¢*(w) may be expressible
in terms of rational functions since even for human tissues,
a single-order Debye relaxation equation is often not enough
and multiterm Debye relaxation equations must therefore be
used to describe the dispersion characteristics [13].

In this paper we describe a differential equation approach
which should be easy to implement for general dispersive me-
dia for which permittivity and/or permeability can be described
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in the frequency domain by means of rational functions. We
illustrate the use of this approach by one-dimensional and
three-dimensional examples of media for which the complex
permittivities are given by a multiterm Debye equation and
for an approximate two-thirds muscle-equivalent model of the
human body.

II. THE DIFFERENTIAL-EQUATION-BASED (FD)2TD METHOD

The time-dependent Maxwell’s curl equations used for the
FDTD method are:

oB OH
Vo E= =y M
oD

where the displacement vector D is related to the electric field
E through the complex permittivity €*(w) of the local tissue
by the following equation:

D= ¢ (w)E 3)

It should be noted that in writing the Maxwell’s equations in
the above form, both the conduction and displacement currents
are combined in 9D /3t or in defining the complex permittivity
¢*(w). In fact, for high-water-content biological tissues, the
conduction current is the larger of the two for frequencies of
tens of MHz or lower, which is reflected in the imaginary part
of ¢* being larger than its real part [14]. Since (1) and (2)
are to be solved iteratively in the time-domain, it would be
desirable to also express (3) in the time-domain.

We have developed a differential equation approach which
should be easy to implement for general dispersive media for
which permittivity and/or permeability can be described in the
frequency-domain by means of rational functions. Because of
our interest in bioelectromagnetic problems, we illustrate this
procedure by taking an example where €*(w) can be described
by a two-relaxation Debye equation:
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where zero (static) frequency dielectric constant ¢, is given by
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Since (5) is a frequency-domain description of D obtained
for a single-frequency sinusoidal variation of fields, we can
write it for an arbitrary time variation in terms of the following
differential equation:
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As can be recognized, (7) is a modified version of the
polarization equation in the relaxation theory of dielectrics.
For the (FD)>TD method, we need to solve (1) and (2) subject
to (7). Similar to references 1, 2, 5, and 15, these equations
can be written in the difference form (illustrated for the z-
components only for each of tlle (1), (2), and (7)) shown at
the bottom of the page where H = \/p,/e¢.H
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In (8)-(10), the subscript n denotes the time nét in terms
of the incremental time or time step 6¢{. The time step 6¢ is
determined by the cell size 6 (assumed equal in x, y, and
z directions. To satisfy the stability condition, the following
condition is generally taken: 6t = §/2¢yax Where ¢y is the
maximum velocity of the electromagnetic waves encountered
anywhere in the interaction space. For the present calculations,
we have taken cn,x = c¢ corresponding to velocity of EM
waves in air.

Upon rearranging terms, we can rewrite (10) as follows
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As in the conventional (frequency-independent) FDTD
method, the fields £ and H are calculated in a time-stepping
manner for a lattice of cubic cells similar to the method
originally proposed by Yee [16]. In our formulation we use
the values of F to calculate H from (8) and similar x- and
y-component equations of (1) in the difference form; use H
to calculate D from (9) and other component equations of (2);
and use D to calculate F from (11) for the following time
step, after which the process is repeated for the next time step
and so on.

In a heterogeneous model, a,, a1, a9, 01, and 35 will be
different for different cells depending on the tissues in that
individual cell. The corresponding coefficients of (11) would,
therefore, need to be stored for such models. Such heteroge-
neous models have not, however, been considered to date. We
are examining the possibility of fitting the frequency variations
of the measured complex permittivities (¢*) for various tissues
to the same relaxation time constants, 7 and 75 for all of the
tissues so that the €* of the various tissue compositions that
typically exist for the various cells may be combined. With
this approach, only three quantities, viz, a,, 1, and ag will
need to be stored for the individual cells.

an

III. ONE-DIMENSIONAL TEST CASES

1. Air-Water Interface

For water, the complex permittivity ¢*(w) can be described
by a single-order Debye relaxation equation

(12)

eWh%@ iﬁﬂ

+ 1+ jwry

where ¢, is the permittivity of free space (= 8.85 x 10712
F/m), €, and €, are the dielectric constants at zero (static) and
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Fig. 1. Frequency spectrum of the truncated Gaussian puése 2used for
the 1-D air-water interface problem. E(t) = 1000e~(t=%o)"/T"  where
to, = 4006t, T = 1526t.

1.00
0.95
0.90
0.85
0.80

LALLM A I B e A L S Y L LR

e  (FD)’ID method
——  Analytical Eq. (13)
0.75
0.70
0.65
0.60
0.55
0.50

RI

/

TN T TS 0N T R Y OO0 S T O U S Y O A 0 SR T S OO

10 20 50 60 x 10°

= AL ALY L R AR R LARANERRRN AR ENRARR!

30 40
Frequency (Hz)

Fig. 2. Comparison of the reflection coefficient for normal incidence at an
air-water interface computed using the (FD)>TD algorithm for broadband
pulse irradiation and from the analytical equation (13).

“infinite” frequencies, and 7, is the “relaxation-time” constant.
We can adapt the formulation of (7) to this case by putting
€s1 = €5,€52 = €00, T1 = T, and 79 = 0, in which case, (7)
becomes a first-order differential equation.

Similar to [9], we have assumed e, = 81,¢,, = 1.8, and
T, = 9.4 x 10712 [17]. We also divided the one-dimensional
problem space into 1000 cells, 499 of which were used to
model air and 501 to model water. As in [9], we also took a
cell size & of 37.5 pm and the time step 8t = §/2¢ = 0.0625
ps, where c is the velocity of EM waves in air.

The assumed incident pulse was of the form E(t) =
1000e~(~%)*/T* where ¢, = 4006t and T = 1528t. The
frequency spectrum for this Gaussian pulse is shown in Fig.
1, where the lobing structure is due to the truncation of the
pulse.

We have used the differential-equation-based (FD)>TD
method to calculate the reflection coefficient as function of
frequency for the air-water interface. Shown in Fig. 2 is a
comparison of the reflection coefficient at various frequencies
obtained from the (FD)?TD method and the exact values
calculated using the following analytical equation:



GANDHI et al.: FREQUENCY-DEPENDENT FINITE-DIFFERENCE TIME-DOMAIN FORMULATION 661

Veo — Ve (W)
Ve + Ve (w)
An excellent agreement is found between the numerical results

using the (FD) 2TD procedure and the analytical values for the
reflection coefficient at various frequencies.

|R(w)] = : (13)

2. Air-Muscle Interface

To test the applicability of the differential-equation-based
(FD)*TD method for dispersive media of more complex fre-
quency variability, we applied it to another one-dimensional
problem for the air-2/3 muscle interface. Since the average per-
mittivity of the human body is close to that for 2/3 muscle, we
decided to take this permittivity instead of that for the muscle.

A five-relaxation Debye equation given in the following
has previously been used to fit to the experimental data for
the muscle [13]

8 x 10°
1+35f/69
81900 11900
11 77/@3x10%) T 11 77/(0.67 x 109)
. 32 N 45.8
1+4f/(230 x 105) " 1+ 5/(20 x 10)
(14)
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where f is the frequency in Hz. Since a five-relaxation Debye
equation such as (14) would result in a fifth-order differential
equation for D(¢) in terms of E(t) and its derivatives, which
would require a larger storage of the various quantities for
each of the cells, we have attempted to fit a two-relaxation
Debye equation similar to (4) to the experimental data for the
muscle. We have been able to obtain a relatively decent fit to
the experimental data for the frequency band 20 MHz to 20
GHz by using the following equation:

10000
15770071 x 10-9)
42
1T 77(0.75 x 10-10)

e(w) =€, |19+

5)

Shown in Figs. 3(a) and (b) as solid curves are the variations
given by (15) for both the relative permittivity e, (real part
of ¢*/e,) and the conductivity o(= w) imaginary part of
€*). Also shown for comparison are the average values of
the experimental data summarized in reference 13 and the
variations given by the five-relaxation Debye (14). For the
frequency band 20 MHz to 20 GHz, the variations given by
(15) are in reasonable agreement with the experimental data
for the muscle. A major advantage of using the simpler (15)
is that it is possible to use a second-order differential equation
for time-domain representation of D(t) rather than a fifth-
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Fig. 3. Frequency variation of the electrical properties of muscle. (a) relative
permittivity €. (b) conductivity o.

order differential equation that would be needed had we used
the full-blown (14) from [13].

Similar to the previous test case of air-water interface, we
divided the problem space into 1000 cells of which 499 were
in air and the remaining 501 were in the 2/3 muscle-equivalent
material. The cell size taken for the caiculations was 0.0127
cm (< A /10 for f < 40 GHz) and 6t = 6/2c = 0.21 ps. The
incident Gaussian pulse had a peak amplitude of 1000 V/m
and was of the form E(t) = 1000e~(=%)"/T* where ¢, = 3T
and T = 716t. The frequency spectrum of the assumed pulse
is shown in Fig. 4.

In Fig. 5, we compare the reflection coefficient for the
air-2/3 muscle interface obtained for the various frequencies
using the (FD)2TD method with that obtained using the
analytical (13). Also shown for comparison are the values
that would be obtained for the various frequencies had the
conventional FDTD method been used and properties assumed
corresponding to a midband frequency of, say, 10 GHz.
While the (FD)Y2TD method using a single run with, say, a
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Fig. 5. Comparison of the reflection coefficient for normal incidence at

the air-2/3 muscle interface computed using the (FD)?TD algorithm with
broadband pulse irradiation and for the tradittonal FDTD method where
properties at the midband frequency of 10 GHz are taken.

Gaussian pulse, gives excellent agreement with the analytical
values at all the frequencies, the conventional FDTD method
gives agreement for the frequency band where the dielectric
properties are close to the values that are assumed for the
calculations. As seen in Fig. 5, for dispersive media such as
the biological tissues, severe errors of calculated results occur
for both lower- and higher-frequency regions.

IV. THREE-DIMENSIONAL TEST CASE: SPHERE
OF 2/3 MUSCLE-EQUIVALENT MATERIAL

We have used the test case of a 2/3 muscle-equivalent sphere
and compared the results of the internal E-field distributions
at various frequencies with the analytical Mie series solutions
that can be obtained at the corresponding frequencies [18].
For the dimensions of the sphere, we have taken a diameter
of 20 cm corresponding to the average dimensions of the
human head. We have divided the three-dimensional sphere
into cells of size 1 cm and have taken a space of 6 cells from
the boundaries of the sphere to the absorbing boundaries on
each of the sides in the x-, y-, and z-directions, respectively.
The time step 6 is taken to be 1/60 ns. Because of the larger
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Fig. 6. Frequency spectrum of the truncated Gaussian pulse used for
the 3-D problem using a sphere of 2/3 muscle-equivalent material.

B(t) = 1000e—(t=t)*/T? where t, = 2106t,T = 806t.

cell size of 1 em (< A./10 for f < 350 MHz), a Gaussian
with lower frequency components is taken as the incident
pulse. The assumed Gaussian is of the form 1000e~(t—t)*/T*
where £, = 2106t and T = 808t. The frequency spectrum
of the Gaussian pulse is given in Fig. 6. In Figs. 7(a), (b),
and (c¢), we compare the (FD)?TD-calculated variations of E,
along the y-axis at some representative frequencies with those
obtained from the Mie series solutions. The agreements of the
calculated E-field variations using the (FD)?TD method with
the analytical solutions are excellent for frequencies for which
the cell size 6 is less than A./10. Though not shown for lack
of space, similar agreements have also been obtained for other
field components for various locations of the sphere.

V. CALCULATIONS FOR THE HUMAN MODEL

We have used the differential-equation-based (FD)2TD
method of calculate the RF currents induced in the model
of the human body. For these calculations we have used the
anatomically based model of the human body described in our
earlier publications [1]-[6], except that uniform 2/3 muscle-
equivalent €¢* was assumed for each of the cells internal to
the body for this first set of calculations. As in the past,
volume-averaged properties were used for all of the cells
at the model boundary, since these cells are only partially
composed of 2/3 muscle-equivalent material, while the rest
of it is air. If the tissue content of a given boundary cell is
less than 10% by volume, air was assumed to be the material
for such cells. For all of the calculations to date we have
used cubical cells of size 2.62 cm. As in [6], the modeled
space is divided into 38 X 26 x 84 = 82992 cells, of which
5628 cells are either totally or partially within the human
body. A spacing of 7-9 cells from the model is taken to
the absorbing boundaries for the various sides of the modeled
space. For the calculations shown in Fig. 8(a) and (b), we have
assumed isolated (ungrounded) condition of the human model
and a flat-top impulse of radiation of width 56t in the time-
domain, where 6t = 0.04367 ns is the time step used for the
calculations. The frequency spectrum of this impulse is fairly
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broad with a nearly constant amplitude for frequencies up to
500 MHz, which is in excess of the region of validity of this
model with cell size of 2.62 cm.
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of the human body. Model assumed isolated from ground. Ei,. = 1 V/m for
each of the frequencies. (a) 40 MHz, 150 MHz. (b) 350 MHz.

We have used the calculated vertically directed internal D,
fields to calculate local z-directed current densities, including
both the conduction and displacement currents, for each of
the cells using the relationship J, = dD,/8t. The vertically
directed currents for any of the layers were then obtained by
summing the terms due to the individual cells in a given layer
as follows

oD,

_ £2
I=5s ot

6)

i

where 62 is the cross-sectional area (2.62 x 2.62 cm?) for each
of the cells in the body.

The induced RF current distributions are calculated for some
representative frequencies 40, 150, and 350 MHz, and are
shown as solid curves in Fig. 8(a) and (b). The results for each
of the frequencies are normalized for an incident E field of 1
V/m at the corresponding frequencies. Shown for comparison
are the current distributions obtained for the same model using
the conventional FDTD procedure. For the latter calculations,
a flat-top impulse of irradiation as described above was also
used, except that different properties for the model correspond-
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ing to 2/3 muscle-equivalent material (from (15)) were used for
the three frequencies. Three individual runs naturally had to be
made for the FDTD method, since different properties for ¢*
were involved at the three frequencies. As seen in Fig. 8(a) and
(b), excellent agreement is obtained for the (FD)2TD results
with those obtained using the conventional FDTD method,
with the added advantage of being able to use a single run
rather than multiple runs needed for the FDTD method.

V1. CONCLUSIONS

In this paper we have described a differential-equation-based
frequency-dependent finite-difference time-domain ((FD)?TD)
method, which can be used for general dispersive media for
which €*(w) and p*(w) may be expressible in terms of rational
functions. We have illustrated the use of this method by one-
and three-dimensional examples of media for which €*(w) is
given by a multiterm Debye equation, and for an approximate
two-thirds muscle-equivalent model of the human body. Using
a single run involving a prescribed incident pulse in the time
domain (e.g., a Gaussian pulse or a flat-top impulse), the
(FD)?>TD method allows calculations of coupled EM fields,
E H, and D, and induced currents as a function of time.
By taking the Fourier components of the induced fields, one
can then obtain the corresponding components at the various
frequencies.

For coupling to extremely narrow pulses such as may be
encountered for ultra wideband radar, one can also store the
impulse response of the scatterer and convolve the fields thus
obtained with the prescribed shape of the incident pulse. This
procedure has recently been used [19] to calculate induced
currents in the 1.31-cm cell size model of the human body
(45024 cells representing the human body) for exposure to
electromagnetic pulse (EMP) and has the advantage of not
requiring repeated large-memory FDTD runs.
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